# Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics

P. Lipka-Bartosik<sup>1</sup>, C.T. Chubb<sup>2</sup>, J.M. Renes<sup>2</sup>, M. Tomamichel<sup>3,4</sup>, <u>K. Korzekwa<sup>5</sup></u>

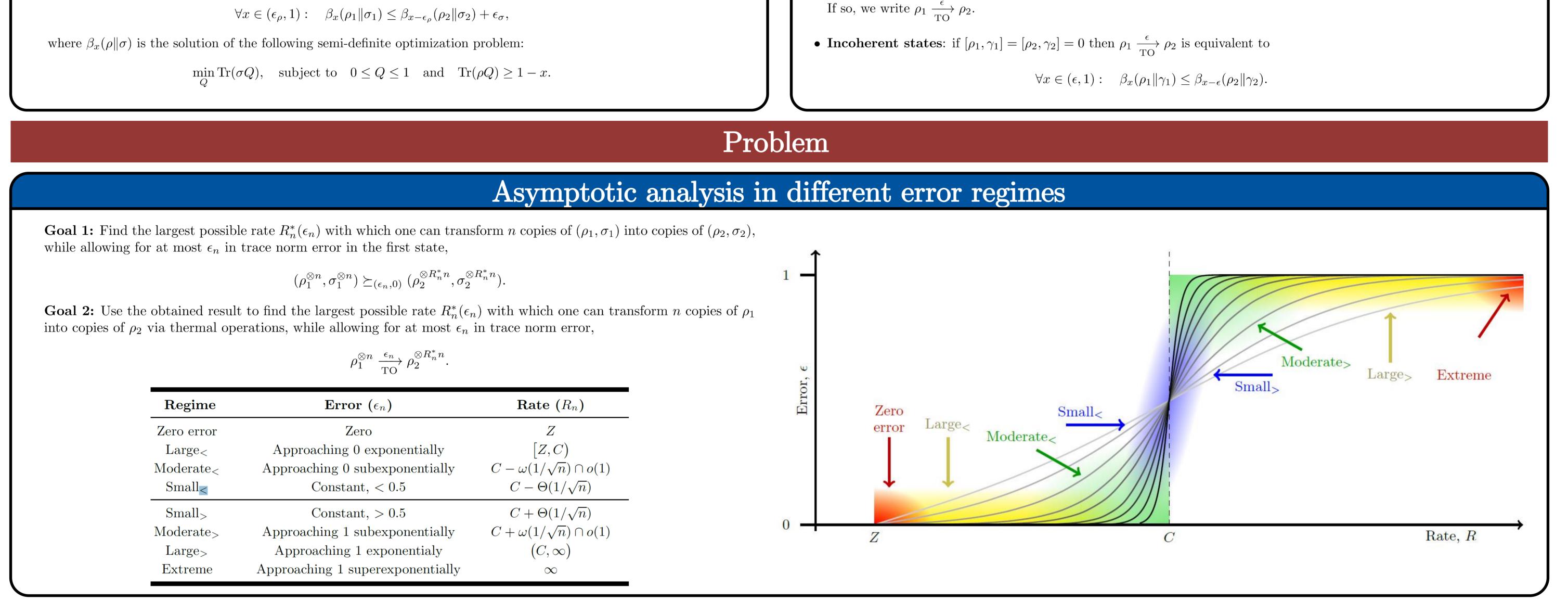
<sup>1</sup>Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland <sup>2</sup>Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland <sup>3</sup>Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore <sup>4</sup>Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore <sup>5</sup>Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland







#### Background Quantum dichotomies Quantum thermodynamics • Thermal equilibrium state: for inverse temperature $\beta$ and a system with Hamiltonian H it is given by • Quantum dichotomy: a pair of quantum states $(\rho, \sigma)$ . • Transforming quantum dichotomies: Does there exist a quantum channel $\mathcal{E}$ such that $\mathcal{E}(\rho_1) = \rho_2$ and $\mathcal{E}(\sigma_1) = \sigma_2$ . • Thermal operations: quantum channels that can be written as If so, we write $(\rho_1, \sigma_1) \succeq (\rho_2, \sigma_2)$ . $\sigma_2 \overset{\epsilon_{\sigma}}{\longrightarrow}$ $\mathcal{E}(\rho) = \operatorname{Tr}_{B'}[U(\rho \otimes \gamma_B)U^{\dagger}] \text{ with } [U, H \otimes \mathbb{1}_B + \mathbb{1} \otimes H_B] = 0,$ • Approximate transformations: Does there exist a quantum channel ${\mathcal E}$ such that where B denotes the bath system with arbitrary Hamiltonian $H_B$ , and B' is any subsystem of the joint system. $\delta(\mathcal{E}(\rho_1), \rho_2) \leq \epsilon_{\rho} \text{ and } \delta(\mathcal{E}(\sigma_1), \sigma_2) \leq \epsilon_{\sigma},$ • Approximate transformations: Does there exist a thermal operation $\mathcal{E}$ such that where $\delta$ denotes the trace distance. If so, we write $(\rho_1, \sigma_1) \succeq_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_2, \sigma_2)$ . $\delta(\mathcal{E}(\rho_1), \rho_2) \le \epsilon.$ • Commuting dichotomies: if $[\rho_1, \sigma_1] = [\rho_2, \sigma_2] = 0$ then $(\rho_1, \sigma_1) \succeq_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_2, \sigma_2)$ is equivalent to



Results

#### Optimal rate in small deviation regime

Let  $\leq \simeq$  denote inequality/equality up to  $o(1/\sqrt{n})$ . For constant  $\epsilon \in (0,1)$ , and  $[\rho_2, \sigma_2] = 0$ , the optimal rate is

 $R_n^*(\epsilon) \simeq \frac{D(\rho_1 \| \sigma_1) + \sqrt{V(\rho_1 \| \sigma_1) / n} \cdot S_{1/\xi}^{-1}(\epsilon)}{D(\rho_2 \| \sigma_2)}.$ 

Furthermore, if we consider general output dichotomies,  $[\rho_2, \sigma_2] \neq 0$ , then the RHS of the above till upper bounds  $R_n^*$ .

#### Optimal rate in moderate deviation regime

Consider an  $a \in (0,1)$ , and let  $\leq / \simeq$  denote (in)equality up to terms scaling as  $o\left(\sqrt{n^{a-1}}\right)$ . Let  $\epsilon_n := \exp(-\lambda n^a)$  for some  $\lambda > 0$ . For  $[\rho_2, \sigma_2] = 0$  the optimal rate is

> $R_n^*(\epsilon_n) \simeq \frac{D(\rho_1 \| \sigma_1) - |1 - \xi^{-1/2}| \sqrt{2\lambda V(\rho_1 \| \sigma_1) n^{a-1}}}{D(\rho_2 \| \sigma_2)},$  $R_n^*(1 - \epsilon_n) \simeq \frac{D(\rho_1 \| \sigma_1) + \left[1 + \xi^{-1/2}\right] \sqrt{2\lambda V(\rho_1 \| \sigma_1) n^{a-1}}}{D(\rho_2 \| \sigma_2)}.$

Furthermore, if we consider general output dichotomies,  $[\rho_2, \sigma_2] \neq 0$ , then the RHS of the above still upper bounds  $R_n^*$ .

#### Optimal rate in large deviation regime

For any error of the form  $\epsilon_n = \exp(-\lambda n)$ , for  $\lambda > 0$ , the optimal rate is upper bounded

 $\limsup_{n \to \infty} R_n^*(\epsilon_n) \le \min_{-\lambda \le \mu \le \lambda} \overline{r}(\mu),$ 

and if  $[\rho_2, \sigma_2] = 0$  then it is lower bounded

 $\liminf_{n \to \infty} R_n^*(\epsilon_n) \ge \min_{-\lambda \le \mu \le \lambda} \widetilde{r}(\mu).$ 

#### Optimal thermodynamic protocols

• Work extraction: the optimal amount of work w that can be performed over a battery system W using ncopies of  $\rho$  and a thermal bath at inverse temperature  $\beta$ ,

$$\rho^{\otimes n} \otimes |0\rangle\!\langle 0|_W \xrightarrow{\epsilon}{\mathrm{TO}} |1\rangle\!\langle 1|_W.$$

is given by

$$\frac{\beta w}{n} \simeq D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon).$$

• Information erasure: the minimal amount of work w needed to reset n copies of  $\rho$ ,

$$ho^{\otimes n} \otimes |0
angle \langle 0|_W \xrightarrow{\epsilon} |0
angle \langle 0|^{\otimes n} \otimes |1
angle \langle 1|_W.$$

 $|0\rangle\!\langle 0|_W$ 

w

 $|1\rangle\langle 1|_W$ 

is given by

$$\frac{\beta|w|}{n} \simeq S(\rho) - \sqrt{\frac{V(\rho)}{n}} \Phi^{-1}(\epsilon).$$

#### Resource resonance

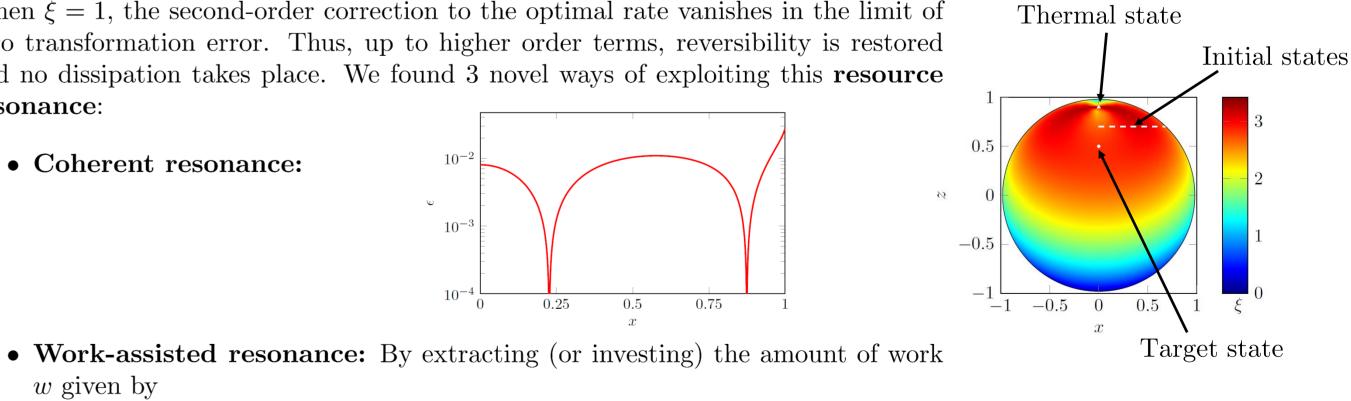
When  $\xi = 1$ , the second-order correction to the optimal rate vanishes in the limit of zero transformation error. Thus, up to higher order terms, reversibility is restored and no dissipation takes place. We found 3 novel ways of exploiting this resource resonance:

 $10^{-3}$ 

 $10^{-4}$ 

• Coherent resonance:

w given by



#### Optimal rate in extreme deviation regime

For  $[\rho_2, \sigma_2] = 0$  the optimal zero-error rate is

 $\lim_{n \to \infty} R_n^*(0) = \min_{\alpha \in \overline{\mathbb{R}}} \frac{D_\alpha(\rho_1 \| \sigma_1)}{D_\alpha(\rho_2 \| \sigma_2)}.$ 

More generally, if  $[\rho_2, \sigma_2] \neq 0$ , then the optimal transformation rate for all n is upper bounded by the RHS of the above.

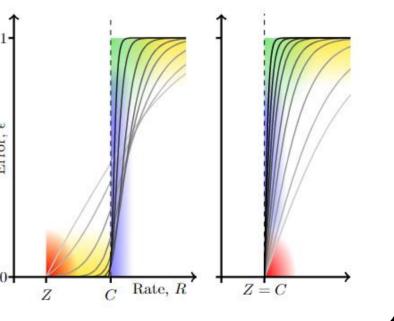
## $\frac{w}{n} = \frac{1}{\beta} \left( D(\rho_1 \| \gamma_1) - \frac{V(\rho_1 \| \gamma_1)}{V(\rho_2 \| \gamma_2)} D(\rho_2 \| \gamma_2) \right),$

0.25

one can get the transformation rate  $R = V(\rho_1 \| \gamma_1) / V(\rho_2 \| \gamma_2)$  with no dissipation, i.e., the final free energy of the system and battery will be the same as the initial one.

• Strong resonance: it corresponds to the situation in which the large and extreme deviation rates also collapse down to the first-order rate, which happens when:

 $\arg\min D_{\alpha}(\rho_1 \| \sigma_1) / D(\rho_2 \| \sigma_2) = 1.$ 



### Information-theoretic and statistical notions

| <b>European Union</b><br>European Regional<br>Development Fund | European<br>Funds<br>Smart Growth                                                                                                                                                                   | Rzeczpospolita<br>Polska                                | (FNP) Foundation for<br>Polish Science                                                                                 | <b>TEAM-NET</b>                                                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| □ Sandwiched relative entropy:                                 | $D_{\alpha}(\rho \  \sigma) := \frac{1}{\alpha - 1} \log \operatorname{Tr} \left( \sqrt{\rho} \sigma^{\frac{1 - \alpha}{\alpha}} \sqrt{\rho} \right)^{\alpha}$                                      | $\hfill \Box$ Inverse of the sesquinormal distribution: | $S_{\nu}^{-1}(\epsilon) = \inf_{x \in (\epsilon, 1)} \sqrt{\nu} \Phi^{-1}(x) - \Phi^{-1}(x - \epsilon)$                |                                                                             |
| □ Relative entropy and relative entropy variance:              | $D(\rho \  \sigma) := \operatorname{Tr} \rho \left( \log \rho - \log \sigma \right),$ $V(\rho \  \sigma) := \operatorname{Tr} \rho \left( \log \rho - \log \sigma \right)^2 - D(\rho \  \sigma)^2,$ | □ Inverse of the standard normal distribution:          | $\Phi^{-1}(\epsilon)$                                                                                                  | $\widetilde{r}(\mu)$ and $\overline{r}(\mu)$ ,<br>refer to the arXiv paper. |
| □ Von Neumann entropy and entropy variance:                    | $S(\rho) := -\operatorname{Tr}\rho \log \rho,$<br>$V(\rho) := \operatorname{Tr}\rho (\log \rho)^2 - S(\rho)^2,$                                                                                     | □ Reversibility parameter:                              | $\xi := \frac{V(\rho_1 \  \sigma_1)}{D(\rho_1 \  \sigma_1)} \Big/ \frac{V(\rho_2 \  \sigma_2)}{D(\rho_2 \  \sigma_2)}$ | For lower and upper bounds in large deviation regime,                       |